

Result 4.1

Concept, curricula and module handbook for three-cycle dual study program "Engineering in Management of Renewable Energy Technology in Buildings"

Compiled by Dr Kari Lilja and Dr Sirpa Sandelin, Satakunta University of Applied Sciences

This work is licensed under the Creative Commons Attribution 4.0 International License.

"The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Partner

Hanse-Parlament (Lead Partner), Germany Satakunta University, Finland, Finland Tallinn University of Technology, Estonia Politechnika Gdanska, Poland Estonian Chamber of Commerce and Industry, Estonia Pomeranian Chamber of Handicrafts for SMEs, Poland Berufliche Hochschule Hamburg, Germany

Language

English

Contents

Project Summary and Introduction	4
Project summary	5
Objectives, results and target groups	5
About the study program "Engineering in Management of Renewable Energy Technology in Buildings "	7
Module Handbook	8
Introduction	8
Goals and target groups of the study program	9
Content of the course	11
Basic modules	12
Occupational modules	12
Specialization modules related to energy (area of elective subjects)	12
Share of the practical part	12
Reports on practice	12
Degree designation: Bachelor of Engineering	12
Didactic concept	13
Practical training	14
Reflections on practice	14
Curriculum	15
Reflections on practice	14

Co-funded by the Erasmus+ Programme of the European Union

Summary of curriculum	16
Curriculum	17
Entry requirements for trainings	24
Examples of materials	29
Notes for the teachers	35
Target group	
Overlapping contents of Module 2 and Module 3	
Work required	
Apprentice / practical parts	
Teaching methods	
Contents of the curriculum	
About the links	
References	

Project Summary and Introduction

The word region is defined as "an area, especially part of a country or the world having definable characteristics but not always fixed boundaries"¹. The Baltic Sea region (BSR) is particularly unique. While the Baltic Sea is the pivotal point defining much of the region's characteristics and challenges, the countries are also extremely different. Geographically, they are divided between Northern, Western and Central/Eastern Europe, historically, they have been shaped by the East-West divide after the second world war. Nevertheless, given their proximity to the Baltic Sea, they have much in common.

The EU has acknowledged this by issuing the very first macro-regional strategy, the EU Baltic Sea Region Strategy in 2009. As most countries boarding the Baltic Sea were by then EU member states, it can well be considered the EU's inland sea. The Baltic Sea Region must address current challenges, such as saving the seas, i.e. ensuring clear water, rich and healthy wildlife and clean and safe shipping. At the same time, there are opportunities for a prosperous region through co-operation measures to increase innovation, to deepen the internal market by improving transport systems, to connect energy markets and to jointly fight cross-border crime. This clearly distinguishes the Baltic Sea Region from other parts of the world.

Therefore, "BSR integration is best understood as the way that European integration has been translated into this region, further deepening and leveraging access to the rest of Europe and the markets that the EU provides"²

Over the past 25 years, this region has become a densely integrated, e.g. in the areas of trade, investment, labor mobility, transport and energy infrastructure as well as research collaboration. Furthermore, it demonstrates a broad landscape of robust cross-border organizations and collaborative efforts. Nevertheless, "companies do not look at the Baltic Sea Region as one integrated market in terms of their strategies. For most of them, the region remains a group of individually small markets within the EU, each with its different dynamics, rivals, and often even regulatory rules"³.

Keeping this in mind, the lack of comprehensive regional data collection is surprising. Therefore, as part of the Erasmus+ funded project "Promoting permeability through dual bachelor's programs with integrated initial and further vocational training" (BA&VET), an analysis of the region's demography, economy, and labour as well as education market has been conducted. The majority of the data is taken from the Eurostat database of the European Union. When needed additional sources, such as the OECD database have been consulted as well.

¹ Oxford Dictionary

² Skilling, David (2018). *The Baltic Sea Economies: Progress and Priorities*. Copenhagen: Baltic Development Forum, p.10. ³ Ibid., p.11

Project summary

Objectives: What do you want to achieve by implementing the project?

- Increasing permeability between vocational and higher education
- Recruiting universities for tasks of further education in climate and environ-mental protection
- Providing excellently qualified entrepreneurs, managers and skilled workers and reducing the shortage of skilled workers to meet the challenges in climate and environmental protection
- Strengthening the productivity of SMEs through innovation support and R&D projects
- Promoting cooperation between SMEs and colleges/universities

Implementation: What activities are you going to implement?

- Analyses economy, education and labour markets and qualification needs
- Creation of solution models for 4 project countries
- Development and implementation of Train the Trainer program
- Development and implementation of 2 dual three-stage Bachelor's degree programs and 2 further trainings in climate and environmental protection
- Implementation of R&D projects in SMEs
- Quality assurance for training measures and project implementation
- Dissemination, transfer of results and implementation consultation

Results: What project results and other outcomes do you expect your project to have?

- Result report of the analyses of the economy, education and labour markets and qualification needs
- Solution models for four project countries
- Complete train-the-trainer program
- Module manuals with all documentation for two dual three-stage Bachelor's programs in climate and environmental protection
- Two further education programs in climate and environmental protection
- R&D projects implemented in SMEs
- Quality manual and results reports
- Manual, result videos and broad regional transfer of results

Objectives, results and target groups

The main objectives of the project are as follows:

a) Increasing the permeability between vocational education and training and higher education and thus promoting the attractiveness of vocational education and training

b) Strengthening the recruitment of colleges/universities for the important tasks of continuing education in climate and environmental protection

c) Providing highly qualified entrepreneurs, managers and skilled workers who, in addition to good theoretical knowledge, also have practical competences, skills and professional experience in climate and environmental protection and reducing the shortage of skilled workers to cope with the very large tasks in the energy, climate and environmental sector.

d) Attracting entrepreneurs and executives who have all the skills to successfully run a company and perform high-quality tasks in climate and environmental protection

e) Strengthening the productivity and competitiveness of enterprises through knowledge and technology transfer, promotion of innovation and implementation of manageable R&D projects

f) Promoting cooperation between SMEs and colleges/universities, strengthening colleges/universities to implement dual courses of study on climate and environmental protection, and promoting entrepreneurship in higher education.

In pursuit of these objectives, the following results will be achieved:

1. Analysis results on the economy, demography, education and labour markets as well as qualification needs in climate and environmental protection

2. Curriculum, Teaching materials, implementation report and evaluation concept and report for teacher training

3. Module handbooks with integrated continuing education, teaching materials, examination regulations, implementation reports as well as evaluation concept and reports for a three-stage dual Bachelor's degree program

- "Business Administration & Sustainable Management of SMEs"
- "Management of renewable building energy technology"

4. Concept for promoting innovation by SMEs and evaluation concept and report

5. Concept for innovation promotion of SMEs and R&D projects carried out for SMEs

6. Concepts and report for the evaluation and quality assurance of qualifications and R&D subsidies as well as project implementation, transfer of results, implementations and implementation consultations

The primary target groups of the project are:

a) School leavers who wish to combine vocational education and training with a bachelor's degree and thus receive excellent employment and professional career opportunities.

b) Students who are qualified in higher education and university and at the same time in a company and who are highly welcome in SMEs as managers and professionals or as independent entrepreneurs.

Co-funded by the Erasmus+ Programme of the European Union

c) Owners, managers and specialists of SMEs who are qualified in continuing vocational training, acquire tailor-made competences and skills for high-quality activities in climate and environmental protection and achieve a recognized continuing vocational qualification.

d) SMEs that attract suitably qualified young entrepreneurs, managers and specialists, receive innovation funding and carry out R&D projects together with colleges/universities.

The project addresses the following secondary target groups (beneficiaries):

a) Colleges and universities which, in order to expand their educational opportunities in climate and environmental protection, receive all the documents and materials for two new dual bachelor's degree programs in order to meet the labour market needs and the conditions of SMEs in particular.

b) Chambers and other vocational training institutions which attract strong young people to vocational training, receive curricula for continuing vocational training modules for the qualification of SMEs and their staff, and cooperate intensively with col-leges/universities in teaching and innovation promotion.

c) Teachers, advisers and lecturers from chambers, other VET providers and colleges/universities who are qualified in Train the Trainer programs to provide high-quality further training, to carry out dual study courses in cooperation with companies as well as innovation promotion and R&D projects for SMEs at a high-quality level.

About the study program "Engineering in Management of Renewable Energy Technology in Buildings "

A Bachelor's degree course in "Engineering in Management of Renewable Energy Technology in Buildings" has been developed, which also integrates initial and continuing vocational training and combines theory (learning at the university) with practice (learning in the company). This "trial" course of study is designed in such a way that

a) it can also be completed without initial vocational training.

b) the integrated continuing education program "Energy Service Manager/Energy Consultant" with a recognized continuing education qualification can also be carried out separately without studying.

Main modules of the developed study program were tested, evaluated and the entire study program was finalized based on the evaluation results. The concept and module handbook of the study program including the transition of the VET program form Result 4.1 Concept, curricula and module handbook for three-cycle dual study program "Engineering in Management of Renewable Energy Technology in Buildings". The trials, implementation report, evaluation concept and report are listed in Result 4.2 Evaluation, reports and qualified students of the degree program "Engineering in Management of Renewable Energy Technology in Buildings".

Module Handbook

Introduction

The climate change, lack of fossil combustibles, and pollution, particularly in the form of the greenhouse gas emissions, and the increasing use of renewable energy and improved energy efficiency as solutions to reach the climate goals of Agenda 2030 of UN, as well as goals of respective Agenda of EU, have been topics of discourse for years. In the beginning of 2022, the Russian attack to Ukraine has brough the dependency of EU on Russian energy products – gas, oil, coal, and electricity – as an emerging topic of European energy discourse. In the spring 2022, the European Commission, as a response to the hardships and global energy market disruption caused by Ukrainian war, launched REPowerEU programme. This programme supports activities aiming to save energy, to produce clean energy, and to diversify energy supplies of the European Union (European Commission, 2023).

In addition to REPowerEU -programme, European Commission has in December 2021 launched a proposal for revision of the Energy Performance of Buildings Directive. This revision has taken effect on 28th May 2024, thus, the revision 2018 of the directive is no longer valid. (European Commission, 2024). The new directive has an ambitious goal to reduce emissions of greenhouse gases caused by buildings with 60 percent by 2030 compared to year 2015. Directive also sets a binding target to decrease the average energy performance of the national residential building stock by 16% by 2030 in comparison to 2020, and by 20-22% by 2035, based on national trajectories, and defines an enhanced standard for new buildings to be zero-emission and the calculation of whole life-cycle carbon for new buildings. (European Commission, 2024b)

In July 2021, the European Commission launched a proposal to renew Energy efficiency Directive, as part of the 'Fit for 55' package. This proposal was supplemented by an additional proposal as part of the REPowerEU plan in May 2022. (European Commission, 2023b). The revised directive took effect on 20th September 2023.

The updated energy efficiency directive aims to establish legally binding goal to reduce the final energy consumption by 11.7% by 2030 compared to the 2020 reference scenario. This includes for each member of the European Union the requirement to define indicative national contribution based on objective criteria which reflects national circumstances. If the national contributions do not match to the EU target, an ambition gap mechanism is applied by the Commission. Each country should also increase annual energy savings step by step from 0.8 per cent (at present) to 1.3 per cent (2024-2025), then 1.5 per cent (2026-2027) and 1.9 per cent from 2028 onwards. This means an average of 1.49 per cent of new annual savings during the period from 2024 till 2030. When planning the savings and activities, vulnerable customers and social housing should be prioritised within the scope of their energy savings measures. In addition to this, an annual energy consumption reduction goal of 1.9% for the public sector should be introduced, including the obligatory annual 3% buildings renovation duty extended to all the levels of public administration. Directive also introduces a new approach, based on energy consumption, for business to have an energy management system or to carry out energy audits. Furthermore, a new obligation to monitor the energy

Co-funded by the Erasmus+ Programme of the European Union

performance of data centres, with an EU-level database collecting and publishing data, has been launched. Municipalities are enhanced to promote local heating and cooling plans, particularly in larger municipalities, and to increase the efficient energy use in heat and cold supply, also in district heating and cooling systems. (European Commission, 2023b).

As a part of the *Clean energy for all Europeans* package, that aims to help EU to meet the emissions reduction commitments stated in the Paris Agreement, the Renewable Energy Directive (2018/2001/EU) took effect in December 2018. The amending Directive EU/2023/2413 entered into force on 20 November 2023 with an 1,5-year period to transpose most of the directive's provisions into national legislation, and a shorter deadline of July 2024 for some provisions related to permitting for renewables. The renewed directive sets an overall European renewable energy target of 42,5 per cent by 2030, and an aim to reach proportion of 45 per cent. The directive also contains rules to ensure the use of renewable energy in the transport sector, and in heating and cooling. Common principles and rules for renewable energy support schemes, sustainability criteria for biomass and the right to produce and consume renewable energy and to establish renewable energy communities are set in the directive that, in addition to those, includes rules to remove barriers, to increase investments and to achieve cost reductions in renewable energy technologies, and to empower private citizens and organizations to participate in the move towards clean energy. (European Commission, 2023c)

The Renewable Energy Directive, recent Energy Efficiency Directive and Energy Performance of Buildings Directive are challenging the states, regions, municipalities, enterprises, and private persons. The demand for skilled persons who could conduct energy audits, advice in energy issues like renovations (European Commission, 2024) and measuring the energy consumption, and design new areal and municipal cooling and heating plans (European Commission, 2023b) will be increased, and in many of the member states, there may be a lack for skilled energy experts. Furthermore, small and medium-sized enterprises operating in the field of energy technology in buildings need employees with a wide range of qualifications and competences, particularly in the topics of renewable energy and energy saving.

The curriculum presented below, will on its part respond to the increasing demand for energy consultants and experts.

Goals and target groups of the study program

The goal of this engineering degree program is to provide students, not only with technical knowledge and skills but also with methodological competences and personal practical and communication skills, which are essential professional competences.

In addition, some modules are also aimed at professionally qualified employees in companies who are interested in high-quality further training. For these employees, a qualification as an "energy consultant" would be conceivable. Modules 3.2, 3.3 and 3.7, which are listed later, play a particularly important role in this.

Co-funded by the Erasmus+ Programme of the European Union

With the help of the competences described above, these target groups can support their company or organization to offer products and services that are competitive from a technical, ecological, and economic point of view, and that will apply to the newest and coming EU-requirements. Studying the course described below will give them capability to prepare analyses and concepts of solutions to technical and business problems based on latest scientific knowledge, and to take responsibility for their professional, social, and personal implementation.

The course focuses on the production and use of renewable energy and topics approaching energy efficiency in private residential buildings as well as commercial and public facilities. The energy systems in buildings will be approached as technical and functional systems designed to be used and maintained throughout their lifecycle, also considering the economic point of view.

The course approaches the topics, not only on point of view of technical expertise, but also from the perspectives of supporting and advising customers, designing and finding solutions to improve energy efficiency of buildings, and other respective professional areas and activities. The main benefits for the customer will be identified necessary actions and up-to-date functional knowledge on how to add the use value of the technology. The emphasis is on theoretical and practical process-oriented designing, implementing, and use of installations, as well as on finding and implementing measures to increase energy efficiency.

The study course "Management of Renewable Energy Technology in Buildings" provides the students with the following skills and knowledge:

- Understanding of technical, ecological, and economic challenges related to renewable energy and rational use of energy in buildings,
- Ability to develop and market an offer that requires intensive advisory in terms of products and services in the field of "renewable energy technologies in buildings" in an interdisciplinary manner,
- Technical and methodological competences enabling designing, implementation, launching, use and maintaining of interdisciplinary renewable energy solutions in buildings,
- Social and communication skills and capability to exchange specialist knowledge with experts, professionally lead employees, and advise clients in an interdisciplinary and professional manner,
- Technical and methodological competence to participate in the strategic development of corporate energy policy,
- Technical and methodological competence to participate in operational company management, and thus to perform economic and technical management tasks,
- Technical and methodological competences in designing operational energy efficient processes, in applying renewable energy technologies, in systematic recording and analyzing the obtained results, and in using these analyses in continuous improvement processes.

Interdisciplinary aspects are carried with through the whole course. Both renewable energy, energy efficiency and designing and communication topics are multi-disciplinary containing issues from technical sciences, natural sciences, linguistics, and social sciences. Business competences are implemented mainly in submodules of module 3.1a that is optional and aimed for those whose earlier studies do not cover these issues. The basic skills required for bachelor's degree in technology are implemented in submodules of module 3.1b and 3.2. Technical competences are implemented in modules 3.3 - 3.9. The practice at workplaces also supports the interdisciplinary nature of studies.

Scientific and methodological competences of students are supported by the basic interdisciplinary module 3.1.9 Research communication). Furthermore, they are promoted and required in modules 3.2 - 3.9. focused on both technical and interdisciplinary aspects.

Content of the course

The "Management of renewable energy technologies in buildings" course consists of 33 compulsory and elective modules in total as well as a bachelor's thesis. The modules are grouped as follows (Table 1):

Table 1: Modules of Bachelor's degree

Year	1	2	3	4	Total
3.1a. General basic studies (Optional), 21 cu, see the curriculum below.					
3.1b. General basic studies in engineering	25				
3.2 Professional basic studies	4	7			
3.3 Basics of Energy, Environmental and Process Technology		7	7		
3.4 Fluid Dynamics and Heat Transfer		, 15	'		
3.5 Renewable Energy 3.6 Design of Renewable Energy		10	20		
Systems			16		
3.7 Energy efficiency in buildings and structures			15	10	
3.8 Processes and Devices of Energy Production				15	
3.9 Carbon-neutral and sustainable societies				24	
3.10 Work placement 35 cu:s, included to					
the work at work place	10	10	10	5	
3.11 Bachelor's Thesis				15	
CU:s theory including thesis	29	29	58	59	180
Hours theory	783	783	1566	1323	4455
CU:s total including work placement Hours total, out of which, 945 hours	39	39	68	64	215
included to the work at work place (35 cu)	1053	1053	1836	1728	5670

Basic modules

As part of the basic modules, students acquire broad competencies in the field of scientific and application requirements in management and technology (Modules 3.1a (optional, compulsory for those who have not studied the respective topics during their earlier studies), 3.1b and 3.2). The basic interdisciplinary modules allow the acquisition of competences that contribute to the comprehensive understanding of practical solutions to problems. On the other hand, they establish the general foundation of methodological scientific work for the systematization and solving of practical problems. This contributes to the completion of master's programs possibly taking place after the completion of bachelor's studies.

Occupational modules

The occupational modules 3.3-3.9 give students a multidisciplinary knowledge and skills they will need during their professional career. These modules also complete the management and societal skills established in the basic modules.

Specialization modules related to energy (area of elective subjects)

To be able to deepen their knowledge of special issues in the energy field, students are encouraged to participate in optional modules offered (O1 - O4), depending on their individual interests.

Share of the practical part

The practical parts consist of training at the workplace and reflections on practice (Practice reports).

Reports on practice

Considering the specific requirements of a given company, four practice reports (one per year) should be prepared, focusing on management and technology, for a total of 35 CUs. The requirements to be met are listed in the preparation instructions for practice reports.

Degree designation: Bachelor of Engineering

After completing the course, a Bachelor of Engineering in Management of Renewable Energy Technologies in Buildings -diploma is awarded (abbreviated as B. Eng.) The engineering qualifications framework was used to help understand the structure of the course. The modules can be assigned to the main areas of the qualifications framework as follows (Table 2).

Basic area	Modules1	CUs	
Engineering, natural sciences, mathematics (at least 55 ECTS credits)	3.1b, 3.2,3.3 3.1a (optional)	21	50
Economics, law, and social sciences (at least 45 ECTS credits)	3.9 Included to other topics	21	24

Table 2: Degree designation of the course

Professional topics (Renewable energy and energy efficiency specific issues)	3.4, 3.5, 3.6, 3.7, 3.8		91
Soft skills and foreign languages (at least 10 ECTS)	Included to 3.1a* and to 3.1b	15	
Apprenticeships (at least 15 ECTS credits)	Included to the work at workplace		35
Thesis (at least 10 ECTS credits)	Bachelor's thesis		15
Total (Theory + thesis)			180
Total including optional 3.1a (basic general knl.)		201	
Total (Theory + thesis + work placement)			215

*) Module 3.1a is an optional module for those who have not gained this knowledge during earlier training.

As it can be seen from the module assignment to the main areas of the qualification's framework in industrial engineering presented above, emphasizing occupational topics and requirements, the minimum scope of the basic areas is met. As a result, awarding a new graduation designation, i.e. B.Eng., is justified. Due to the multidisciplinary nature of studies, certain issues are included in many modules, thus, calculating sum of CUs from table above does not give the exact final sum of CUs given by graduation.

Didactic concept

To meet current and future challenges in the field of renewable energy technology in buildings, graduates need a wide range of well-established scientific and practical competences, skills, and knowledge. The concept of dual studies is a didactic approach to the transfer of both practical skills and theoretical knowledge. The application presented below, with theoretical studies at the university of applied sciences, and vocational training in the workplace, is an example of how the studies might be implemented.

Classes take place on average over three weekends per month (apart from periods free from classes). In addition, in the spring and autumn of the academic year, a full-time 14day block takes place at the vocational academy. In between individual classes, students participate in company apprenticeships. In addition, students are required to have self-studies during which they study independently, solve the assignments, and prepare themselves for exams. This form of organization allows students

- to use the knowledge from their classes in practice,
- to prepare for the classes,
- and to draw conclusions from both class-learning and learning in practice as part of self-study.

To guarantee an intensive acquisition of competences, the courses are largely conducted in small groups of approx. 30 students. The lectures for larger groups are usually based on interactive discussion too. Lectures of smaller groups use collaborative methods that support participation, such as pair work, group work, and case studies. As a part of pair work and group work, students are encouraged to present and discuss experiences gained during their

apprenticeships in the workplace, and in that way combine theory and practice with the help of a lecturer.

The interaction between apprenticeships and learning is largely ensured and guided by reflections on practice, written studies that are prepared as part of workplace learning. Reflections on practice are project works, aimed at discussing specific issues of operational practice, using specialized and methodological scientific competences acquired during the course. While preparing their reflections on practice, students are accompanied by a lecturer.

One part of the didactic concept is seminar classes. Small groups of students facilitate intensive dialogue with lecturers as part of discourse focused on the content related to the students' professional practice. Exercises, either individual or group work, enable the application and exploration of the didactic plan. Furthermore, case studies and related exercises are used to convey complex educational content and to learn holistic thinking that exceeds the borders of individual modules.

Practical training

The practical training at workplaces is an important part of the studies. During the 4 years students are assumed to be able to work a total of 3550 hours. During the first two years the time for working is 1100 hours per year, and next two years 750 and 600 hours (Table 3). The decreased number of working hours is due to increased amount of theory studies.

Table 3: Training at workplace

	Year	1	2	3	4	Total
Work and training at workplace		1100 h	1100 h	750 h	600 h	3550 h

Reflections on practice

The study plan also includes the preparation of four reflections on training at workplace (Reports on practice), 10, 10, 10 and 5 credits units (one for each academic year 1-4). These reports should contain a summary of their tasks and what they have learned during the practice. If the schedule allows, each student should give a brief presentation too. In addition to this, the thesis should also be based on practice and, in best case, reflects on practice by solving a problem found during the internships.

Reflections on practice are used to develop transfer and problem-solving competences by applying theory in the workplace and to promote students' social and communication competences through close coordination and cooperation with supervisors and employees, as well as clients in the company. Preparing and presenting the presentation develops student's communication skills.

Unlike the practical projects, a large part of the content/topics from the classes offered up to the exam is available for solving individual work-related problems. Reflections on practice take place in the internships at workplace and provide complementary self-study.

Curriculum

The whole study programme consists of VET course giving a qualification of skilled worker / journeyman, Further VET course giving a qualification of Energy consultant, and Bachelor's studies giving a qualification of Bachelor of Engineering in Management of Renewable Energy in Buildings. The topics of Further VET are included into courses of Bachelor's degree.

Co-funded by the Erasmus+ Programme of the European Union

Summary of curriculum

Table 4: Summary of curriculum

Year	1	2	3	4	Total
1. VET-courses according to country-specific					
requirements					
- Training at VET-institute	500 h	500 h			1000 h
- Work and training at workplace	1100 h	1100 h	750 h	600 h	3550 h
2. Further VET "Energy consultant" included to					
modules 3.2, 3.3 and 3.7					
General basic studies (Optional), 21 cu, see					
the curriculum below.					
3.1b. General basic studies in engineering	25				25
3.2 Professional basic studies	4	7			11
3.3 Basics of Energy, Environmental and					
Process Technology		7	7		14
3.4 Fluid Dynamics and Heat Transfer		15			15
3.5 Renewable Energy			20		20
3.6 Design of Renewable Energy Systems			16		16
3.7 Energy efficiency in buildings and					
structures			15	10	25
3.8 Processes and Devices of Energy					
Production				15	15
3.9 Carbon-neutral and sustainable societies				24	24
3.10 Work placement 35 cu:s includes to the					
work at work place					
3.11 Thesis				15	15
CU:s	29	29	58	64	180
Hours	783	783	1566	1728	4860
Sum of hours	2383	2383	2316	2328	9410
CU:s Bachelor	29	29	58	64	180

Curriculum

Module No.	Module	du	ring ader	nic y	ear	Total hou	-	1	Type of class	Examination performanc module (duration in min) Contribution to the total	as well as grade
		1.	2.	3.	4.	Contact teachin g	Self- studies	Total	Lectures (V), Practical studies (Ü), Seminars (S)	Exam type	Total grade
1	VET-modules according to local requirements									Depending to country- specific requirements	
2	Main module: Further VET level, included into topics of Main module 3										
2.1	General subjects required for Bachelor's degree – if required in this phase, topics and hours according to national requirements									Depending to country- specific requirements	
2.2	Further vocational training "Energy consultant"					199 - 219	151 - 191	350- 410			11-13
2.2.1	Communication		1			20	10	30	V, Ü	Written exam, 60 min,	1
2.2.2	Professional skills					179 - 199	141 - 181	320- 380			10-12
2.2.2.1	Motivation					4	1	5	V, Ü	Exercises done and accepted	1
2.2.2.2	Legislation and regulation, EU- and local level		1			20	5	25	V, Ü	Written exam 120 min	
2.2.2.3	Energy efficiency		6			105	95	200	V, Ü, [S]	Done and accepted exercises. Written exams a' 60 or 120 min	6

2.2.2.3.1	Calculations and classifications		1			15	15	30	Ü	Done and accepted exercises.	1
2.2.2.3.2	Insulation, avoiding the heat and cool leakages.		3			50	50	100	V, Ü	Done and accepted exercises. Written exam 120 min	3
Module No.	Module	du	edit ring ader	the		Total hou	irs		Type of class	Examination performance module (duration in min) Contribution to the total g	as well as
		1.	2.	3.	4.	Contact teachin g	Self- studies	Total	Lectures (V), Practical studies (Ü), Seminars (S)	Exam type	Total grade
2.2.2.3.3	Technology in buildings		1			15	15	30	V, Ü	Written exam, 60 min	1
2.2.2.3.4	Designing the energy-efficient buildings		1			20	10	30	V, Ü	Accepted assignment	1
2.2.2.3.5	Other issues according to local needs					5	5	10	V, Ü	Accepted assignment	
2.2.2.4	Renewable energy		2			30	20	50	V, Ü	Written exam 120 min	2
2.2.2.5	Energy efficiency certificates		1			20	20	40	V, Û	Accepted assignment	1
2.2.2.6	Carbon footprint (Optional)		2			20	40	60	V, Ü	Accepted calculation exercises	[2]
3	Main Module: Bachelor's degree										
3.1a	General basic studies (Optional – aimed for those who have not studied these during their earlier studies, topics depending to country-specific regulation, e.g.: 1. Basic Use of Office 2. Starting Higher Education Studies 3. Effectual Entrepreneurship 4. Workplace Skills 5. Professional Communication	11 1 1 3 3	10 3			300	267	567	V, Ü	Examinations and accepted assignments and calculation exercises according to country- specific regulation and practices	21

	6. English for Working Life	3									
	7. Professional English Skills in										
	Engineering		4								
3.1b	8. Basics of Project Activities) General basic studies in	25	3			300	321	675			25
5.15	engineering					300	521	0/5			25
3.1.9	Research Communication	2				30	24	54	V, Ü	Accepted assignment	2
Module No.	Module	dui	Credit Points during the academic year		Total hou	irs	l	Type of class	Examination performance module (duration in min) a	as well as	
		aca 1.	2.	псу 3.	ear 4.	Contact	Self-	Total	Lectures (V),	Contribution to the total g	Total
		1.	2.	5.	4.	teachin	studies	Totat	Practical studies (Ü), Seminars (S)	Exam type	grade
3.1.10	Mathematical Tools in Engineering	3				50	31	81	V, Ü	Accepted exercise	3
3.1.11	Algebra	4				60	48	108	V, Ü	Written exam 120 min	4
3.1.12	Geometry	4				60	48	108	V, Ü	Written exam 120 min	4
3.1.13	Mechanics	3				50	31	81	V, Ü	Written exam 120 min	3
3.1.14	Vibration, Wave and Nuclear Physics	3				50	31	81	V, Ü	Written exam 120 min	3
3.1.15	Thermal Engineering and Fluid Dynamics	3				50	31	81	V, Ü	Written exam 120 min	3
3.1.16	Physics Laboratory 1	2				10	44	54	Ü	Accepted assignment	2
3.1.17	Occupational Safety and First Aid	1				20	7	27	V, Ü	Accepted assignment	1
3.2	Professional basic studies	4	7								11
3.2.1	Introduction to 2D Modelling	3				30	51	81	V, Ü	Accepted assignment	3
3.2.2	Basics of Chemistry	1	4			80	55	135	V, Ü	Written exam 120 min	5
3.2.3	Feasibility Calculations		3			51	30	81	V, Ü	Written exam 120 min	3
3.3	Basics of Energy, Environmental and Process Technology		7	7							14
3.3.1	Basic of Energy Technology			4		70	38	108	V, Ü	Written exam 120 min	4

3.3.2	Basics of Environmental Technology		4			70	38	108	V, Ü	Written exam 120 min	4
3.3.3	Material and Energy Balances		3			60	21	81	V, Ü	Written exam 120 min	2
3.3.4	Spreadsheet Applications and Technical Reports			3		41	40	81	V, Ü	Written exam 120 min	2
3.4	Fluid Dynamics and Heat Transfer		15								15
3.4.1	Fluid Dynamics		4			70	38	108	V, Ü	Written exam 120 min	4
3.4.2	Pumps, Fans and Compressors		3			34	20	81	V, Ü	Written exam 120 min	3
Module No.	Module	du	edit l ring t aden	the		Total hou	irs		Type of class	Examination performanc module (duration in min) Contribution to the total	as well as
		1.	2.	3.	4.	Contact teachin g	Self- studies	Total	Lectures (V), Practical studies (Ü), Seminars (S)	Exam type	Total grade
3.4.3	Heat Transfer Technology		5			80	55	135	V, Ü	Written exam 120 min	5
3.4.4	Piping Systems		3			50	31	81	V, Ü	Written exam 120 min	3
3.5	Renewable Energy			20							20
3.5.1	Solar Energy: 3 CU			3		50	31	81	V, Ü	Written exam 120 min	3
3.5.2	Wind Energy: 3 CU			3		50	31	81	V, Ü	Written exam 120 min	3
3.5.3	Bioenergy: 3 CU			3		50	31	81	V, Ü	Written exam 120 min	3
3.5.4	Hydropower: 3 CU			3		50	31	81	V, Ü	Written exam 120 min	3
3.5.5	Hydrogen Power: 3 CU			3		50	31	81	V, Ü	Written exam 120 min	3
3.5.6	Renewable energy solutions in buildings 5 CU			5		80	55	135	V, Ü	Written exam 120 min	5
3.6	Design of Renewable Energy Systems			16							16
3.6.1	Hybrid Heat Generation Systems			4		60	48	108	V, Ü	Written exam 120 min	4
3.6.2	Design of a Biothermal Center			4		60	48	108	V, Ü	Written exam 120 min	4
3.6.3	Design of a Solar Energy System			4		60	48	108	V, Ü	Written exam 120 min	4

3.6.4	Design of a Heat Pump System			4		60	48	108	V, Ü	Written exam 120 min	4
3.7	Energy efficiency in buildings and structures			15		10					25
3.7.1	Materials and components			5		70	65	135	V, Ü, S	Written exam 120 min	5
3.7.2	Insulation			5		70	65	135	V, Ü, S	Written exam 120 min	5
3.7.3	Appliances and equipment			5		70	65	135	V, Ü, S	Written exam 120 min	5
3.7.4	Heat recovery				5	70	65	135	V, Ü, S	Written exam 120 min	5
3.7.5	Special topics				5	50	85	135	V, Ü, S	Written exam 120 min	5
Module No.	Module	du	edit ring aden	the		Total hou	irs		Type of class	Examination performance module (duration in min) Contribution to the total g	as well as
		1.	2.	3.	4.	Contact teachin g	Self- studies	Total	Lectures (V), Practical studies (Ü), Seminars (S)	Exam type	Total grade
3.8	Processes and Devices of Energy Production				15						15
3.8.1	Heat Pumps				3	50	31	81	V, Ü	Written exam 120 min	3
3.8.2	Basics of Electrical Systems				3	50	31	81	V, Ü	Written exam 120 min	3
3.8.3	Cooling Technology				3	50	31	81	V, Ü	Written exam 120 min	3
3.8.4	Combustion Technology				3	50	31	81	V, Ü	Written exam 120 min	3
3.8.5	Heat and Cold Distribution Systems				3	50	31	81	V, Ü	Written exam 120 min	3
3.9	Carbon-neutral and sustainable societies				24						24
3.9.1	Environmental Legislation				5	90	45	135	V, Ü, S	Written exam 120 min	5
3.9.2	Energy and Environmental Economy				5	90	45	135	V, Ü, S	Written exam 120 min	5
3.9.3	Air Pollution Control				5	90	45	135	V, Ü, S	Written exam 120 min	5
3.9.4	Life Cycle Assessment and Carbon Footprint				5	90	45	135	V, Ü, S	Written exam 120 min	5
3.9.5	Energy Efficiency				4	70	38	108	V, Ü, S	Written exam 120 min	4

3.10	WORK PLACEMENT included to the work and training at workplace		10	10	10		810	810	Ü	Work placement reports, 1 / placement	30
3.11	Thesis				15	15	390	405	Ü, S	Thesis can be evaluated according to local practices	15
O1 - Option	Process and Control Technology										0-19
01.1	Basics of Process Technology										4
01.2	Process Control										5
01.3	Industrial Processes										5
01.4	Modelling and Design of Processes										5
Module No.	Module	du	ring	Point the nic y		Total hou	irs		Type of class	Examination performance module (duration in min) a Contribution to the total g	as well as
		1.	2.	3.	4.	Contact teachin g	Self- studies	Total	Lectures (V), Practical studies (Ü), Seminars (S)	Exam type	Total grade
O2 – option	Systems of the Centralized Energy Production										0 - 21
02.1	Power Plant Technology and Regulations										3
02.2	Operation and Modelling of a Power Plant										4
02.3	Electrical and Automation Systems in a Power Plant										3
02.4	Steam Processes										3
O2.5	Steam Boilers										3
O2.6	Nuclear Energy										5
O3 – option	Environmental Technology										0 - 10
03.1	Waste and Material Management in Circular Economy										5

BAVE

Promoting permeability through dual bachelor's programs with integrated initial and further vocational training (BA&VET)

03.2	Contaminated Land and Recycling of									5
	Soil									
O4 – option	Sustainable Society									0 - 12
04.1	Healthy and Safe Work Environment									4
04.2	Built Environment and Spreading of									3
	Diseases									
O4.3	Quality Management and									5
	Management Systems									
Note	It is recommended that student can ha	ave tl	ne opti	onal	courses O	1 – 04 wit	hin the ac	ademic years :	2-4 at any period. To avoid di	fficulties
	in offering these courses it is recomme	ende	d that	they	were, if po	ssible, se	lf-study co	ourses.		

As a part of studies, students will be given the opportunity to take an 'Energy Consultant' further education examination. The content of the 'Energy Consultant' further education program is a part of the degree course.

Following modules of the degree program comprise the content of the 'Energy Consultant' further training course and must be completed to be able to take the corresponding further training examination:

- Legislation and regulations: 3.9.1
- Energy efficiency: 3.7.2, 3.7.3, 3.7.4
- Renewable energy: 3.5.6
- Energy efficiency certificates: 3.3.4, 3.9.5
- Carbon footprint (Optional): 3.9.4

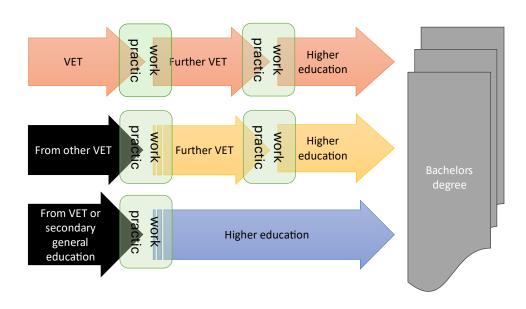
Text indicates the module in curriculum of Energy Consultant and numeric notation indicates the resp. module in this curriculum. These modules are planned to be taught mainly during the third and fourth academic year. If an institute offering the training wants to give students an opportunity to take the 'Energy Consultant' further education examination as a milestone, order of modules can be changed.

Entry requirements for trainings

In common, the entry requirements for trainings included in dual exam are:

- Vocational level
 - Requirements: Comprehensive school or respective, minimum of 8 or 9 classes
 / years, depending to country.
- Further vocational level
 - Requirements: Vocational qualification. In some countries and / or trainings certain work experience is required after graduation of vocational level. In some countries and some trainings, no entry requirements are set for further vocational training.
- University of Applied Sciences (UAS-level (Bachelor)
 - o Vocational or further vocational qualification, or
 - o ther qualification of upper secondary school, e.g. senior high school, college, upper secondary general school, etc., depending to the education system of the country.

There may be country, branch- and qualification-specific exceptions, and restrictions.


In our curriculum, the alternatives could look like described in Figure 1. In two lower alternatives, the qualification gained from VET or further VET should be compatible with qualification gained from VET of our curriculum. Furthermore, in last case, the basic vocational studies learnt in vocational and further vocational studies must be included to curriculum for those coming from general upper secondary education. On the other hand, the basic mathematics, physics, and chemistry are not necessary, if they have been taught in secondary school. In topmost alternative, that is a default in our curriculum, we must consider, not only the mathematic, physics and chemistry that belongs to the requirements of bachelor's degree, but also basics of these subjects, commonly belonging to the requirements of general upper secondary school (senior high school, college, etc., depending to the country and culture), because, in common, topics taught in VET are more limited.

In this manual, the curriculum presented will follow the topmost alternative in Figure 1. Each school will be allowed to decide themselves, following the legislation of their country, whether they will permit students coming following the other two alternatives, and what are the requirements in such cases.

In this case, VET vocational skills are those required from junior electrician (or comparable vocational training), and further VET vocational skills are those required from senior electrician or craftsman in energy technology (or comparable further training). Due to the fact, that common vocational education does not always include necessary studies in nature sciences (Mathematics, physics, and chemistry), communication and languages, nor in liberal arts, these topics have been included into curriculum and put available for those aiming the bachelor's degree (M3.1a).

Figure 1: Alternatives for training

The Table 5 presents the recommendable goals and examples of contents of each obligatory module.

Table 5: Contents of obligatory modules

Contents of studies and tips for s Module	Topics	Notes
BASIC STUDIES: Grey parts opt	ional but obligatory for those wh	o have not studied these issues
earlier		
M3.1a General Basic Studies:		Recognition of prior learning -
1. Basic Use of Office		process, known also as
2. Starting Higher	Introduction to library use,	accreditation of prior learning
Education Studies	information acquiring etc.	can be used to replace courses
3. Effectual Entrepreneur-	Basics of entrepreneurship and	with respective knowledge and
ship	entrepreneurial thinking.	skills gained in other training.
4. Workplace Skills	Legislation, rules, and social	The knowledge gained should
	norms at workplace.	be at least at the same level
5. Professional Communi-	Different ways to communicate	than the courses that will be
cation	as professional.	replaced.
6. English for Working Life	Vocabulary and language	
	needed in work life.	The size and proportion of
7. Professional English	Technical vocabulary and	these basic study courses can
Skills in Engineering	language used in engineering.	be lower, or courses can be
8. Basics of Project	Project management terms and	omitted if the same knowledge
Activities	principles	has been gained in previous
		studies (M1 or M2 during this
		dual programme).

0.4h 0.4m		
3.1b General basic	Academic writing and	Literature used in common
studies in engineering	communication, scientific	bachelor's training.
9. Research	ethics.	
Communication		Literature used in common
10. Mathematical Tools in	Mathematics and physics not	Bachelor of engineering-
Engineering	studied in earlier stages but	training. Studies in algebra,
11. Algebra	needed in this stage.	geometry and physics must be
12. Geometry		technically oriented, and, if
13. Mechanics		possible, weighting electronic
14. Vibration, Wave and		calculations.
Nuclear Physics		
15. Thermal Engineering		
and Fluid Dynamics		
16. Physics Laboratory		
17. Occupational Safety	Must be done before	
and First Aid	laboratories.	
M3.2 Professional Basic		
Studies, Compulsory		
1. Introduction to 2D	2D-modeling with CAD-	
Modelling	program.	
2. Basics of Chemistry		
3. Feasibility Calculations		
PROFESSIONAL STUDIES 129		
M3.3 Basics of Energy,	Different forms of energy, use,	Note: these topics can be
Environmental and Process	benefits, and disadvantages.	replaced by Recognition of
Technology, Compulsory	Waste, wastewater and	prior learning -process if they
1. Basic of Energy	emission, preventing and	are taught in previous modules
Technology	processing.	/ stages.
2. Basics of	Connections between material,	Goal of this module is to give
Environmental	energy, economy, and ecology,	students abilities to study
Technology	and calculations, e.g.,	environmental and energy
3. Material and Energy	coefficient of burning	issues, and to produce
Balances	combustibles.	technical analyses and reports
4. Spreadsheet	How to use spreadsheets in	
Applications and	technical analyses and reports	
Technical Reports		
M3.4 Fluid Dynamics and	Physical properties and	Goal: After this module a
Heat Transfer, Compulsory	behaviour of fluids in different	student understands behaviour
1. Fluid Dynamics	circumstances.	of fluids in different conditions,
2. Pumps, Fans and	The types, work principles,	knows, how pumps, fans and
Compressors	properties and use of different	compressors work and where
3. Heat Transfer	pumps, fans, and compressors.	they can be used, understands
Technology	Physical conditions of heat	the techniques of heat transfer,
4. Piping Systems	transfer, technologies used,	is aware of loss and knows how
	loss and how to avoid it.	to avoid it, identifies different
	Different piping systems, their	piping systems, knows their
	properties and use.	properties and how to use
		them.
M3.5 Renewable Energy	Different forms of renewable	Goal: After this module,
Compulsory	energy, their availability,	student knows the possibilities

1.	Solar Energy	production, use, benefits, and	of renewable energy solutions,
2.	Wind Energy	disadvantages.	and can apply them in practice.
3.	Bioenergy	How the renewable energy	Student also know, what kind of
4.	Hydropower	solutions can be integrated into	solutions can be integrated in
5.	Hydrogen Power	and used in buildings.	buildings and how to use them.
6.	Renewable energy	-	Examples of materials
	solutions in buildings		Examples of materials 2
	C		Examples of materials 3
M3.6 D	esign of Renewable	Issues that should be	Goal: After this module,
	Systems, Compulsory	considered when designing	student identifies different use
	Hybrid Heat Generation	different renewable energy	cases, knows the requirement
	Systems	systems and systems using the	use cases set to energy
2.	Design of a Biothermal	energy produced by them,	systems and can design
	Center	including occupational and fire	renewable energy system
3.	Design of a Solar Energy	risks.	suitable for individual use case.
	System		
4.	Design of a Heat Pump	It is recommended that there	Examples of materials
	System	are several case examples and	Note: The whole range of
	2	assignments during the	materials contains issues
		courses.	usable in this module.
M3.7 E	nergy efficiency in	Issues that are affecting to	Goal: Student knows the
	ngs and structures,	energy efficiency of a building.	structural issues that are
Comp	-	<u>U- and G-values</u> , and how to	affecting to energy efficiency of
-	Materials and	calculate them, properties of	a building and can calculate
	components	different materials, structures	buildings energy efficiency
2.	Insulation	and appliances, and their	based on drawings and
3.	Appliances and	impact on energy efficiency.	construction descriptions in
	equipment	Methods of heat recovery, and	accordance with local
4.	Heat recovery	how to use them. Regional	requirements.
	Special topics	and/or country-specific topics.	Examples of materials
	rocesses and Devices	Common energy production	Goal: Student knows
of Ene	rgy Production,	processes and devices and	technologies used, identifies
Comp		technology used to produce	their impacts on environment,
1.	Heat Pumps	both conventional and	and recognizes suitable and
2.	Basics of Electrical	renewable and clean energy	recommendable energy forms
	Systems	usable in buildings, including	for each case and building.
3.	Cooling Technology	electricity, heat, and cool.	Examples of materials
4.	Combustion	-	
	Technology		
5.	Heat and Cold		
	Distribution Systems		
M3.9 C	arbon-neutral and	History of concept	Goals: Student understands
sustai	nable societies,	"sustainability", and its most	the concepts of sustainability
Comp	-	important milestones (e.g.,	and sustainable development
1.	Environmental	Rome summit, Brundtland's	and is aware of the diversity of
	Legislation	committee, Stockholm	concepts. Student knows the
2.	Energy and	summit, Rio Summit, General	path of energy efficiency
	Environmental	assembly of UN 2015), concept	regulation from SDGGs and
	Economy	of sustainability, contents of	directives to local regulation.
3.	Air Pollution Control	SDGs including targets and	Student knows the
		indicators, latest EU Directives	requirements of legislation and

4. Life Cycle Assessment	and programmes approaching	can conduct life cycle
and Carbon Footprint	energy efficiency and	assessment, carbon footprint
5. Energy Efficiency	renewable energy, and local	and energy efficiency
	legislation and regulation,	calculations and write energy
	concept of life cycle, <u>methods</u>	efficiency certificates
	of LCA, energy efficiency	according to country-specific
	assessment and energy	requirements.
	efficiency certificates.	Examples of materials
		See also the materials of
		WP4A7
M3.10 WORK PLACEMENT		Note: In dual model this can be
Compulsory		a part of work at workplace
M3.11 Bachelor's thesis,		Note: It is recommended, that
Compulsory		the bachelor's thesis should be
		started as early as possible
		during the studies. Despite of
		this the finishing of thesis can
		be delayed due to e.g. the
		theme of thesis, or personal
		reasons.
O1: Process and Control		Note: These optional modules
Technology, optional.		can be defined according to
Basics of Process		country- and university-specific
Technology		needs and requirements. The
Process Control		aim of these modules is to give
Industrial Processes		students an opportunity to
Modelling and Design of		specialize to certain field.
Processes		
Systems of the Centralized		
Energy Production, Optional		
Power Plant Technology		
and Regulations		
Operation and		
Modelling of a Power		
Plant		
Electrical and		
Automation Systems in		
a Power Plant		
Steam Processes		
Steam Boilers		
Nuclear Energy		
Environmental Technology,		
Optional		
Waste and Material		
Management in Circular		
Economy		
Contaminated Land		
and Recycling of Soil		
Sustainable Society, Optional		
	1	

•	Healthy and Safe Work
	Environment
•	Built Environment and
	Spreading of Diseases:
•	Quality Management
	and Management
	Systems

Examples of materials

The purpose of these materials is to offer an example of available material both for teacher to support his / her work, and for student to support self-learning. In description of modules there are links to certain subchapters below, but it should be borne in mind that suitable materials for every module can be found from other subchapters too, without forgetting the links, sources, and further materials of each site and article. Thus, keep your mind open and have a look at the whole material.

Designing and installing PV systems

https://www.energy.gov/eere/solar/solar-photovoltaic-system-design-basics

<u>https://www.energy.gov/eere/solar/photovoltaic-system-design-and-energy-yield</u> (See the additional resources in the end of the page)

https://energysavingtrust.org.uk/advice/solar-panels/

https://www.electricaltechnology.org/2020/07/design-and-installation-of-solar-pvsystem.html

https://arka360.com/ros/safety-guidance-when-installing-solar/

https://www.energy.gov/energysaver/planning-home-solar-electric-system

https://www.electrical-installation.org/enwiki/PhotoVoltaic_(PV)_installation

<u>https://www.geogreenpower.com/solar-panels/ultimate-guide-to-installing-solar-panels-for-your-property/</u> (Downloadable guide, requires your e-mail)

https://www.fluke.com/en/learn/blog/safety/targeting-safety-in-photovoltaic-systeminstallation-and-maintenance

https://energyresearch.ucf.edu/consumer/solar-technologies/install-solar-electric/

Note: Check always the instructions and requirements of local authorities.

Fire protection of PV systems

https://www.nrel.gov/docs/fy19osti/68415.pdf

https://www.tuvsud.com/en-us/services/risk-management/fire-protectionengineering/photovoltaic-rooftop-panels

https://www.nfpa.org/for-professionals/training-for-me/electrical-training/photovoltaic-andenergy-storage-systems-online-training-series

https://www.thefpa.co.uk/news/photovoltaics-and-fire

https://fsri.org/research/firefighter-safety-and-photovoltaic-systems

https://www.energy.gov/eere/solar/articles/assessing-fire-risks-photovoltaic-systems-anddeveloping-safety-concepts-risk

Building-integrated PV-systems

State-of-the-Art Technologies for Building-Integrated Photovoltaic Systems

Review on the progress of building-applied/integrated photovoltaic system

Review of technological design options for building integrated photovoltaics (BIPV)

<u>A Holistic Approach for Design and Assessment of Building-Integrated Photovoltaics</u> <u>Systems</u>

Application of Building Integrated Photovoltaic (BIPV) in Net-Zero Energy Buildings (NZEBs)

A review on building-integrated photovoltaic/thermal systems for green buildings

Renewable energy in buildings

Use of renewable energy sources for heating buildings

<u>Renewable energy resources and multi-energy hybrid systems for urban buildings in Nordic</u> <u>climate</u>

Exergy and Exergy-Economic Approach to Evaluate Hybrid Renewable Energy Systems in Buildings

Adoption of Renewable Energy Systems in common properties of multi-owned buildings: Introduction of 'Energy Entitlement'

Renewable Energies and Architectural Heritage: Advanced Solutions and Future Perspectives

Design, Project, and Realization of a Prototype of an Energy-efficient Prefabricated House IDA I. using Renewable Energy Sources.

Energy efficiency of buildings

Energy efficiency in sustainable buildings: a systematic review with taxonomy, challenges, motivations, methodological aspects, recommendations, and ...

A review on zero energy buildings–Pros and cons

Estimating building energy efficiency from street view imagery, aerial imagery, and land surface temperature data

A statistical analysis of life cycle assessment for buildings and buildings' refurbishment research

Assessing Efficiency and Environmental Performance of a Nearly Zero-Energy University Building's Energy System in Norway

Energy Performance of Buildings Directive

ISO 52000-1:2017 Energy performance of buildings

Energy Efficiency Assessment for Buildings Based on the Generative Adversarial Network Structure

Energy Audits – Improve your buildings energy efficiency

https://www.designingbuildings.co.uk/wiki/Energy_audit Note the links and related articles too.

Building Energy Performance Assessment - Support Website ...

Energy Assessments and Benchmarking - an example of New York.

Understanding energy ratings and performance values (U- and G -values)

G-value in buildings / U-values in buildings

Energy assessment of advanced and switchable windows for less energy-hungry buildings in the UK

Passive mitigation of overheating in Finnish apartments under current and future climates

Passive Building Energy Saving: Building Envelope Retrofitting Measures to Reduce Cooling Requirements for a Residential Building in an Arid Climate

Energy certificates

Certificates and inspections - Energy - European Commission

Energy performance certificate

ENERGY STAR Certification for Buildings

Policy Pathway - Energy Performance Certification of ...

Energy Certifications in Architecture: 14 Examples Worldwide

What is Energy Performance Certificate (EPC) for Buildings?

Does Energy Star Certification Reduce Energy Use in Commercial Buildings?

Automated energy performance certificate based urban building energy modelling approach for predicting heat load profiles of districts

Note: The texts above are different ways to approach assessment methods and energy certificates. Always refer to assessment methods and certificate requirements valid in your country and region.

Carbon-neutral and sustainable societies

Design and Implementation of a Futuristic EV Energy Trading System (FEETS) Connected with Buildings, PV, and ESS for a Carbon-Neutral Society

Progress, challenge and significance of building a carbon industry system in the context of carbon neutrality strategy

Sustainable development economy and the development of green economy in the European Union

Reconciling welfare policy and sustainability transition-A case study of the Finnish welfare state

Changing values of millennials and centennials towards responsible consumption and sustainable society

Sustainable Societies – Follow the links, read the materials, good site e.g., for self-learning.

Strategies to achieve a carbon neutral society: a review

Global Trends and Policies on Carbon Neutrality and Digitalization

Sustainability solutions

Life cycle assessment (LCA) and methods

Circular building assessment

Life Cycle Assessment of Buildings: A Practice Guide

Life-cycle assessment for green building experts

Model for Life Cycle Assessment (LCA) of buildings - downloads automatically

https://energysavingtrust.org.uk/advice/solar-panels/

https://www.designingbuildings.co.uk/wiki/Life cycle assessment

Energy production

Concepts and definitions

How electricity is generated

Energy Processes, Systems and Equipment

Methods of Generating Electricity Targeted for younger but can be useful in some cases.

Electricity Production and Distribution

Energy Processes, Systems and Equipment Note: See all the papers and articles.

Energy system Part of IEA's wide web materials, suitable for self-learning.

<u>Techno-economic assessment of green hydrogen production by an off-grid photovoltaic</u> <u>energy system</u>

Low-carbon economic dispatch of integrated energy system containing electric hydrogen production based on VMD-GRU short-term wind power prediction

Combined Heat and Power (CHP) Partnership

Renewable Energy and Electricity

<u>Hydrogen Production Processes</u> - <u>Hydrogen Production</u> – <u>Hydrogen Delivery</u> – <u>Hydrogen</u> <u>Storage</u>

Fuel Cells

Summary of scientific articles approaching electricity production

Summary of scientific articles approaching energy production

Energy loss (See also the other chapters and links to further materials.)

New ideas and technologies

Textile-Triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices

Revolutionizing Solar Energy with AI-Driven Enhancements in Photovoltaic Technology

An energy-efficient plasma methane pyrolysis process for high yields of carbon black and hydrogen

Occupational safety

Control of Hazardous Energy

Hazardous energy control programmes

Energy issues in common and particularly from point of view of sustainable rural development projects

Basic energy concepts

Energy concerns and the project cycle

Economics of energy in agriculture and rural development projects

Comparison of energy alternatives for small-scale irrigation

Agro-forestry, a new fashion of old tradition?

Appendices

Various links

Note: some of these links may already be in ordered list above. Furthermore, it is worth noting, that some of the publications below referring to EU-directives have been done on point of view of the revisions 2018 of the directives, and new instructions basing on revisions 2023 of the directives are probably under work at the moment. Thus, follow the branch and development!

Energy Efficiency Directive, updated 20th September 2023 <u>http://data.europa.eu/eli/dir/2023/1791/oj</u>

Energy Performance of Buildings Directive http://data.europa.eu/eli/dir/2024/1275/oj

Renewable Energy Directive <u>https://eur-lex.europa.eu/legal-</u> <u>content/EN/TXT/?uri=celex%3A32018L2001</u> and amending directive <u>http://data.europa.eu/eli/dir/2023/2413/oj</u>

Energy efficient building directory of EU <u>https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings_en</u>

Use of Renewable Energy in Buildings https://www.intechopen.com/chapters/73187

5 Renewable Energy Sources that are going to impact the Building Industry in the Future <u>https://www.re-thinkingthefuture.com/architects-lounge/a334-5-renewable-energy-sources-that-are-going-to-impact-the-building-industry-in-the-future/</u>

Building integrated renewable energy systems (RES) <u>https://www.matchup-project.eu/solutions/internet-of-things/</u>

Sustainable energy in buildings <u>https://klima.praha.eu/en/sustainable-energy-and-buildings.html</u>

Assessment of renewable energy... https://eprints.gla.ac.uk/260000/1/260000.pdf

Performance assessment and optimization... <u>https://www.researchgate.net/profile/Maria-</u> <u>Ferrara-</u>

6/publication/339879574 Performance assessment and optimization of a solar cooling system to satisfy Renewable Energy Ratio RER requirements in multifamily buildings/links/60a3df7792851ccae9e8b80e/Performance-assessment-andoptimization-of-a-solar-cooling-system-to-satisfy-Renewable-Energy-Ratio-RER-

requirements-in-multi-family-buildings.pdf

Embedding energy optimization in organizations: A case study of a Swiss decentralized renewable energy system

https://www.sciencedirect.com/science/article/pii/S0378778820334964/pdfft?md5=d8fe2424 39a1b8baf69b2f1954c93dc0&pid=1-s2.0-S0378778820334964-main.pdf

Review of technological design options for building integrated photovoltaics (BIPV) <u>https://www.sciencedirect.com/science/article/pii/S0378778819339155/pdfft?md5=b549e73</u> <u>205d707f95847cebf75aaf2bc&pid=1-s2.0-S0378778819339155-main.pdf</u>

Analysis of cooling load on commercial building in UAE climate using building integrated photovoltaic façade system

https://www.academia.edu/download/92930974/j.solener.2020.02.06220221023-1gmr2qs.pdf

Holistic economic analysis of building integrated photovoltaics (BIPV) system: Case studies evaluation

https://www.sciencedirect.com/science/article/pii/S0378778819315907/pdfft?md5=2adaaa1 693619bd05fc0d9a693e67390&pid=1-s2.0-S0378778819315907-main.pdf

Sustainable design of geothermal energy systems for electric power generation using life cycle optimization <u>https://aiche.onlinelibrary.wiley.com/doi/am-pdf/10.1002/aic.16898</u>

Renewable energy systems for building heating, cooling and electricity production with thermal energy storage

https://www.sciencedirect.com/science/article/pii/S1364032122004592/pdfft?md5=78c5cb5 6d1c2644e7cf5f054bcdf43b0&pid=1-s2.0-S1364032122004592-main.pdf

Design, Development and Testing Plan for Energy Efficiency Algorithms Related to Building-Integrated Cooling, Heating, and Power Systems <u>https://www.osti.gov/servlets/purl/1996377</u>

Optimum design of hybrid wind/PV energy system for remote area https://www.sciencedirect.com/science/article/pii/S2090447919301017/pdfft?md5=540e35d 7f0f4f2b882bd1b939fd22711&pid=1-s2.0-S2090447919301017-main.pdf

Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems

https://www.sciencedirect.com/science/article/pii/S0306261920307091/pdfft?md5=43f8a278 7c531ea1b8e6d985519e4fec&pid=1-s2.0-S0306261920307091-main.pdf

Optimizing design and dispatch of a renewable energy system https://www.sciencedirect.com/science/article/am/pii/S0306261921000829

Users in the design of Hydrogen Energy Systems: A systematic review https://www.sciencedirect.com/science/article/am/pii/S0360319920307801

Trends in design of distributed energy systems using hydrogen as energy vector: A systematic literature review

https://www.sciencedirect.com/science/article/am/pii/S0360319918330970

Recommendations for energy storage compartment used in renewable energy project <u>https://www.sciencedirect.com/science/article/pii/S2666202722000465/pdfft?md5=cf66d81e</u>8bf75905de1e484b7ff0de2d&pid=1-s2.0-S2666202722000465-main.pdf

Renewable energy – powering a safer future <u>https://www.un.org/en/climatechange/raising-ambition/renewable-energy</u>

Renewable hydrogen: what are the benefits for the EU? https://www.europarl.europa.eu/topics/en/article/20210512STO04004/renewable-hydrogenwhat-are-the-benefits-for-the-

eu#:~:text=Its%20use%20for%20energy%20purposes,can%20be%20repurposed%20for% 20hydrogen

Notes for the teachers

The material enclosed is an example showing how the topics of this course could be presented. Each teacher should adjust this to the circumstances of his own country, considering the local regulation the level and skills of the trainees, and the study programme of the students; are they studying construction, finishing, plumber, some examples to be given. Each programme may require different weightings and highlights, and it is on the responsibility of each teacher to consider these special needs. The number of usable materials is big, and in every module, only some examples has been enclosed, thus, it is recommended, that when choosing the final materials, also examples of other modules would be considered.

Target group

The primary target group of the training is young people with exam from lower secondary school having interest in energy branch and energy efficiency. The secondary target group is people who are already working in the branch, and who want to develop their skills and knowledge of energy issues.

During the implementation of the curriculum, a decision should be made: Will there be only beginners in the training or will trainer / school allow students to come straight to the second or even third stage, and if, how could / should we ensure that they have knowledge, skills and qualifications required in the stage they are coming. Furthermore, the programme has been divided into three stages, journeyman's examination, further vocational training, and bachelor's degree. Will only those, gained the journeyman's qualification in this programme, be allowed to continue the next stage, or are other students having the appropriate qualification, allowed to study the next stage too.

Overlapping contents of Module 2 and Module 3

Although the contents of submodule 2.2.2 (Energy consultant) and some submodules of module 3 are partially overlapping, it is on teacher's responsibility to evaluate, whether the knowledge and skills gained in module 2.2.2 and during the work experience are close enough to that required in module 3 so that these parts of module 3 could be replaced by using the *accreditation of prior learning* -process, if such a process is in use.

Work required

In the curriculum, the average work required by each module is measured in units used in educational level in question to make it easier for teachers to plan the practical application. In VET level, the used unit is ECVET and in higher education level ECTS credit units (abbreviated in this presentation as CU) has been used. 60 ECVETs responds studies of one year, and one ECTS credit unit equals 27 hours workload. The curriculum consists of modules and submodules with various size. Depending to national weightings and requirements, size, order, and weights of submodules can be changed inside each module. However, it is not recommended to change the submodules between modules.

Apprentice / practical parts

It has been assumed, that the apprentice periods belonging to the Bachelor's degree will be done during the work at workplace -phases. If this is not possible, e.g., student has come from upper secondary school direct to Bachelor's degree, the work learning periods must be arranged in some other way.

Teaching methods

Teachers are encouraged to use varying methods containing e.g.:

- Self-learning
- Lectures,
- Visiting lecturers,

- Construction site visits,
- On-line studies,
- Videos approaching the topics (Reliability of the source must be evaluated),
- Individual studies,
- Assignments, and
- Reporting and presenting the work done at workplaces.

Cooperation with the local experienced industry practitioners is highly recommended. All modules can be studied individually, so the modules can be offered also via open studies to all companies and organizations operating at the construction and finishing branches, who intend to develop their skills in using the modern information technology in their business.

Contents of the curriculum

The regulations, circumstances and qualification requirements are quite different in different BSR-countries, thus, the curriculum and material has been written as a form of framework inside which the local actors should modify the contents of modules according to their own regulations and local requirements, without forgetting the needs of different study programmes. By using innovative, problem-based, and experiential educational approaches, teacher will be able to help students to become experts who are able to acquire, create, implement, use, and advice effective energy saving methods.

The overall objectives of the curriculum are:

- The student deepens his/her knowledge about sustainability and energy issues.
- The student understands the regulatory framework and knows the essential contents of legislation on the energy sector on the point of view of both industry and consumers.
- The student can explain specific terms that relate to sustainability, energy efficiency, and renewable energy, and their use in the context of buildings,
- The student understands the importance of energy issues and knows how to improve the energy efficiency of buildings and how to utilize renewable energy in buildings,
- The student deepens his/her knowledge about sustainability, energy, and energy efficiency.

The curriculum is divided into modules and submodules. Each submodule and main modules 1 and 2 can be replaced with studies, knowledge and skills gained earlier, although it is not recommended to use this process with modules containing essential skills on point of view of qualification targeted. Teacher and education institute have the duty and right to evaluate whether the skills and knowledge or studies are adequate considering the requirements of the qualification, and student's capability to participate in further studies basing to this knowledge.

About the links

In the curriculum, there are mostly bookmarks to the topic-specific link lists at the end of the document. These lists are neither absolute nor exclusive. Each teacher can search and use materials that are more compatible with the requirements of his/her country and/or training.

Co-funded by the Erasmus+ Programme of the European Union

The links to materials have been tested during the period November 2023 – August 2024. However, the links may be changed and deleted very fast; thus, it is recommended that links which will be given to students should be checked at the beginning of each course. Some of the links may be behind the paywall and require agreement between the educational institute and publisher to be available. In such case, contact your librarians. Some of the links refer to documents that have been written for commercial or political purposes. The authors of this document do not take a stand for or against any product, and the research results and opinions found in the links are also the responsibility of the original authors of the documents in question.

References

- European Commission. (2023, September 22). *REPowerEU*. Retrieved from European Green Deal: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energyeurope_en
- European Commission. (2023b, September 22). *New Energy Efficiency Directive published*. Retrieved from Energy: https://energy.ec.europa.eu/news/new-energy-efficiencydirective-published-2023-09-20_en
- European Commission. (2023c, 11 20). *Renewable Energy Directive*. Retrieved from Renewable Energy Directive: https://energy.ec.europa.eu/topics/renewableenergy/renewable-energy-directive-targets-and-rules/renewable-energy-directive_en
- European Commission. (2024, April 28). *Energy performance of buildings directive*. Retrieved from Energy: http://data.europa.eu/eli/dir/2024/1275/oj
- European Commission. (2024b, June 01). *Energy Performance of Buildings Directive*. Retrieved from Energy Performance of Buildings Directive: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficientbuildings/energy-performance-buildings-directive_en